合作客戶/
拜耳公司 |
同濟大學(xué) |
聯(lián)合大學(xué) |
美國保潔 |
美國強生 |
瑞士羅氏 |
相關(guān)新聞Info
-
> 表面張力和重力驅(qū)動下液態(tài)釬料填充焊縫流動模型構(gòu)建及效果評估(二)
> 3種常見醇類燃料甲醇、乙醇、正丁醇噴霧特性與表面張力的關(guān)系(二)
> 如何改善水性涂料的耐水性?
> 微量天平的感量是多少,超微量電子天平操作方法
> 納米熔鹽形成機理、表面張力測定及影響因素研究(三)
> 表面張力儀用于柔軟抗菌涂層面料研發(fā)
> 無人機噴霧作業(yè)下荔枝葉片上的表面張力、接觸角及霧滴沉積特性
> 氟原子表面張力極低,可提高消泡劑的持續(xù)抑泡效果
> 不同酸值、分子結(jié)構(gòu)對烷基苯磺酸鹽界面活性的影響(一)
> 球擬假絲酵母菌合成槐糖脂類表面活性劑、降解含油廢水的表面張力(一)
推薦新聞Info
-
> 一套低溫、高壓懸滴法表面張力實驗測量系統(tǒng)實踐效果(三)
> 一套低溫、高壓懸滴法表面張力實驗測量系統(tǒng)實踐效果(二)
> 一套低溫、高壓懸滴法表面張力實驗測量系統(tǒng)實踐效果(一)
> 不同溫度下純有機物液體表面張力估算方法及關(guān)聯(lián)方程(二)
> 不同溫度下純有機物液體表面張力估算方法及關(guān)聯(lián)方程(一)
> ?工藝因素對植物纖維活性發(fā)泡材料表面張力的影響
> 印刷掉墨現(xiàn)象:真空噴鋁轉(zhuǎn)移紙儲存時間與涂層表面張力、結(jié)合牢度關(guān)聯(lián)性研究(三)
> 印刷掉墨現(xiàn)象:真空噴鋁轉(zhuǎn)移紙儲存時間與涂層表面張力、結(jié)合牢度關(guān)聯(lián)性研究(二)
> 印刷掉墨現(xiàn)象:真空噴鋁轉(zhuǎn)移紙儲存時間與涂層表面張力、結(jié)合牢度關(guān)聯(lián)性研究(一)
> 煤體潤濕性與水溶液表面張力關(guān)系的實驗分析【下】
多晶硅蝕刻液的制備方法及表面張力測試結(jié)果
來源:浙江奧首材料科技有限公司 瀏覽 1029 次 發(fā)布時間:2024-11-20
在存儲技術(shù)發(fā)展過程中,半導(dǎo)體存儲具有存取速度快、功耗低、體積小、可靠性高等優(yōu)勢,廣泛應(yīng)用在電子設(shè)備中,并且正逐步取代機械硬盤成為主流存儲器。其中閃存存儲器以其單位面積內(nèi)存儲容量大、改寫速度快等優(yōu)點,正逐步取代機械硬盤成為大數(shù)據(jù)存儲領(lǐng)域中的主角。其技術(shù)的發(fā)展也是朝著不斷增大單位面積存儲容量的方向發(fā)展,由二維到三維,再到不斷地增加堆棧層數(shù)。
在3D堆疊過程中需要先將多晶硅蝕刻掉,形成凹槽。目前多晶硅蝕刻液體系主要分為堿性或酸性體系。堿性體系對多晶硅的蝕刻存在蝕刻速率慢、硅晶面選擇性、蝕刻過程中會生成丘狀形貌增加表面粗糙度高等問題。酸性體系可很好的解決上述問題,然而酸性體系中的氫氟酸會優(yōu)先蝕刻二氧化硅層,所以酸性體系提升氧化硅與多晶硅的選擇比是亟待解決的問題。
多晶硅蝕刻液的制備方法:
分別稱取各自用量的各個組分,然后將超純水、氫氟酸、氧化性酸、兩親性離子液體依次加入容器內(nèi),充分攪拌溶解,最后過濾,即得所述多晶硅蝕刻液。
其中,所述過濾可采用0.1-0.5μm濾芯過濾。
本發(fā)明的多晶硅蝕刻液實施例和對比例的制備方法:
多晶硅蝕刻液實施例1-7包含的組分及摩爾比如表1所示,多晶硅蝕刻液對比例1-3包含的組分及摩爾比如表2所示。按照下表1和表2分別稱取各自用量的各個組分,然后將超純水、氫氟酸、氧化性酸、兩親性離子液體依次加入容器內(nèi),充分攪拌溶解,最后采用0.5μm濾芯過濾,即得所述多晶硅蝕刻液。
表1:多晶硅蝕刻液的實施例1-實施例7
表2:多晶硅蝕刻液制備的對比例1-對比例3
表3:測試數(shù)據(jù)
關(guān)于性能測試與說明:
將含有兩親性離子液體的多晶硅蝕刻液用于3D存儲芯片中的方法:
將所述多晶硅蝕刻液引入蝕刻槽內(nèi),然后使用該蝕刻液在25℃下浸泡該3D存儲芯片,浸泡時間為6min,將所述蝕刻后3D存儲芯片放入超純水中沖洗至少兩次,每次不得少于30s,即完成處理得到蝕刻后3D存儲芯片。
性能1表面張力的測試方法為:
采用上述方法處理完成后,采用芬蘭Kibron公司生產(chǎn)的表面張力儀在室溫下分別對蝕刻液和經(jīng)過0.5μm的濾芯過濾200次后的蝕刻液的表面張力進行測試,測試結(jié)果參見表3。
性能2蝕刻選擇比測試方法為:
分別測定蝕刻液對氧化硅層以及多晶硅層的蝕刻速率,將氧化硅層蝕刻速率除以多晶硅層蝕刻速率,即可得蝕刻選擇比。
在本發(fā)明中,使用的超純水均為電阻至少為18MΩ的去離子水。
關(guān)于測試結(jié)果的分析說明:
基于表3可以看出,對比例1和實施例1的區(qū)別僅在于兩親性離子液體不同,其中,對比例1采用常規(guī)的N-乙基全氟辛基磺酰胺乙醇作為表面活性劑,導(dǎo)致表面張力增加,蝕刻選擇比降低。對比例2未加入1,1,2,2,3,3-六氟丙烷-1,3-二磺酸亞胺鋰,無法調(diào)節(jié)蝕刻速率。對比例3單獨采用1,1,2,2,3,3-六氟丙烷-1,3-二磺酸亞胺鋰作為表面活性劑,導(dǎo)致表面張力增加,蝕刻選擇比降低,而本發(fā)明合成的離子液體同時具有多氟基團、環(huán)狀結(jié)構(gòu)、多羥基,能夠顯著降低表面張力,同時提高蝕刻選擇比。
通過說明書附圖做進一步對比說明:
對制備例1的兩親性離子液體進行紅外測試,測試結(jié)果參見圖1。
從圖1可以看出,在3433cm-1處為-OH的伸縮振動峰,在3030 cm-1為甲基的伸縮振動吸收峰,在2980 cm-1,2845 cm-1處為亞甲基的不對稱伸縮振動和對稱伸縮振動,1431cm-1是亞甲基C-H的面內(nèi)彎曲振動吸收峰,1378cm-1處的峰屬于胺類C-N單鍵的伸縮振動吸收峰,1095 cm-1、1058 cm-1處的峰為S=O的不對稱和對稱的伸縮振動,綜上說明已成功合成離子液體表面活性劑。





