合作客戶/
拜耳公司 |
同濟(jì)大學(xué) |
聯(lián)合大學(xué) |
美國(guó)保潔 |
美國(guó)強(qiáng)生 |
瑞士羅氏 |
相關(guān)新聞Info
-
> 黏土塑性和摻合水之間的關(guān)系
> 礦化度對(duì)含有氧丙烯鏈節(jié)和氧乙烯鏈節(jié)的表面活性劑的界面張力影響
> 不同冷表面預(yù)設(shè)溫度下液滴凍結(jié)過(guò)程的演變規(guī)律
> NaOL、HZ組合捕收劑對(duì)鋰輝石礦物浮選效果、表面張力影響(一)
> 磁場(chǎng)強(qiáng)度和磁化時(shí)長(zhǎng)對(duì)除草劑溶液表面張力、噴霧霧滴粒徑的影響(一)
> 什么叫熔體,表面張力對(duì)陶瓷熔體的作用機(jī)理
> 不同OFP含量的FPUA光固化涂層合成及表面性能研究
> 基于表面張力系數(shù)等模擬液滴撞擊熱壁面的動(dòng)力學(xué)行為(一)
> 新型均相微乳液型助排劑AO-4表/界面張力測(cè)定及室內(nèi)評(píng)價(jià)——摘要、實(shí)驗(yàn)部分
> 不同有機(jī)溶劑對(duì)離子液體密度、表面張力和導(dǎo)熱系數(shù)的影響
推薦新聞Info
-
> 一套低溫、高壓懸滴法表面張力實(shí)驗(yàn)測(cè)量系統(tǒng)實(shí)踐效果(三)
> 一套低溫、高壓懸滴法表面張力實(shí)驗(yàn)測(cè)量系統(tǒng)實(shí)踐效果(二)
> 一套低溫、高壓懸滴法表面張力實(shí)驗(yàn)測(cè)量系統(tǒng)實(shí)踐效果(一)
> 不同溫度下純有機(jī)物液體表面張力估算方法及關(guān)聯(lián)方程(二)
> 不同溫度下純有機(jī)物液體表面張力估算方法及關(guān)聯(lián)方程(一)
> ?工藝因素對(duì)植物纖維活性發(fā)泡材料表面張力的影響
> 印刷掉墨現(xiàn)象:真空噴鋁轉(zhuǎn)移紙儲(chǔ)存時(shí)間與涂層表面張力、結(jié)合牢度關(guān)聯(lián)性研究(三)
> 印刷掉墨現(xiàn)象:真空噴鋁轉(zhuǎn)移紙儲(chǔ)存時(shí)間與涂層表面張力、結(jié)合牢度關(guān)聯(lián)性研究(二)
> 印刷掉墨現(xiàn)象:真空噴鋁轉(zhuǎn)移紙儲(chǔ)存時(shí)間與涂層表面張力、結(jié)合牢度關(guān)聯(lián)性研究(一)
> 煤體潤(rùn)濕性與水溶液表面張力關(guān)系的實(shí)驗(yàn)分析【下】
變壓器油界面張力檢測(cè)方法之準(zhǔn)確性對(duì)比
來(lái)源:潤(rùn)滑油 瀏覽 1412 次 發(fā)布時(shí)間:2024-04-08
變壓器油是變壓器內(nèi)部重要的絕緣材料,油品質(zhì)量直接影響到變壓器的電氣性能和運(yùn)行壽命。在運(yùn)行中,變壓器油在電氣設(shè)備中因受濕度、光線、金屬催化、水分及電場(chǎng)等因素的影響,會(huì)生成羧酸、醇等親水極性物質(zhì)在油-水界面的定向排列會(huì)改變界面上分子排列狀況,從而降低界面張力。因此,界面張力是變壓器油標(biāo)準(zhǔn)中的一項(xiàng)重要指標(biāo),能夠反映新油在精煉時(shí)的純凈程度和在運(yùn)行中油的氧化程度。
實(shí)驗(yàn)儀器
儀器:本文采用芬蘭Kibron表面張力儀型號(hào)Delta-8測(cè)定界面張力。
方法:不同產(chǎn)品標(biāo)準(zhǔn)所采用的界面張力檢測(cè)方法不同,具體如表1和2所示。可以看出,各方法的測(cè)量原理相同,測(cè)定絕緣油的界面張力的方法大都采用的是圓環(huán)法,主要區(qū)別就是界面形成后即非平衡條件、接近平衡條件及平衡條件下測(cè)試的保持時(shí)間不同。
表1變壓器油界面張力檢測(cè)方法
表2不同界面張力檢測(cè)方法試驗(yàn)條件對(duì)比
結(jié)論與討論
由表3和圖1可得,界面張力均隨界面保持時(shí)間延長(zhǎng)而降低。其中,新變壓器油的酯類油比礦物油的界面張力低很多,這是由于酯類油的分子結(jié)構(gòu)具有親水性,使其界面張力相應(yīng)減小。
表3新油不同試驗(yàn)條件界面張力檢測(cè)結(jié)果對(duì)比
圖1新油的界面張力隨時(shí)間變化曲線
表4和圖2試驗(yàn)結(jié)果表明,老化后的礦物油和酯類油的界面張力也隨界面保持時(shí)間延長(zhǎng)而降低。與新油比,老化后變壓器油的界面張力均比新油的界面張力低,尤其是礦物油D油的界面張力從新油46mN/m左右降至16mN/m左右。表3數(shù)據(jù)顯示該樣品抗老化、氧化性較差,因此容易生成醛、酮、羧酸等老化產(chǎn)品,而這些老化產(chǎn)物均為極性物質(zhì),在油水界面上做定向排列,從而使油品老化后油水間界面張力降低。E和F油為合成酯變壓器油,雖然本身界面張力不高,但其氧化穩(wěn)定性較好,老化前后界面張力變化不明顯。
表4老化油不同試驗(yàn)條件界面張力檢測(cè)結(jié)果對(duì)比
圖2老化油的界面張力隨時(shí)間變化曲線
對(duì)比圖3和圖4發(fā)現(xiàn),老化油界面張力隨著兩相界面的保持時(shí)間呈較明顯下降趨勢(shì),說(shuō)明這一過(guò)程在老化變壓器油中比在新變壓器油中更為明顯。
圖3新礦油和老化礦油的界面張力隨時(shí)間的變化曲線
圖4新酯類變壓器油和老化酯類變壓器油界面張力隨時(shí)間變化的曲線
IEC62961:2018方法介于ASTMD971方法和EN14210方法之間,在界面形成180s時(shí)測(cè)量界面張力更加符合實(shí)際,同時(shí)測(cè)量時(shí)間對(duì)測(cè)量結(jié)果影響較小。從圖3和圖4也可以看出,老化油的界面張力隨時(shí)間變化較為明顯,主要表現(xiàn)在界面張力曲線從30s到180s的變化斜率較大,而在界面形成的180s時(shí)測(cè)量界面張力數(shù)值與300s的測(cè)量數(shù)據(jù)很接近,可以提供一個(gè)較為真實(shí)的界面張力值,并且檢測(cè)時(shí)間相對(duì)較短。
新頒布的變壓器油國(guó)際標(biāo)準(zhǔn)IEC60296:2020《電工流體電氣設(shè)備用礦物絕緣油》,其界面張力檢測(cè)規(guī)定采用ASTMD971-2020方法和IEC62961:2018兩種方法,為了得到更有效的數(shù)據(jù)和滿足實(shí)驗(yàn)室快速高效的日常檢測(cè)工作,推薦采用IEC62961:2018方法為宜。
結(jié)論
界面張力是反映變壓器油精制過(guò)程中潔凈程度的指標(biāo),并與油品的老化程度密切相關(guān)。國(guó)內(nèi)外檢測(cè)變壓器油界面張力方法的主要區(qū)別在于界面形成后的保持時(shí)間不同。
實(shí)驗(yàn)室通過(guò)采用圓環(huán)法考察測(cè)量時(shí)間對(duì)界面張力值的影響,結(jié)果表明老化油的界面張力受時(shí)間影響較為明顯,同時(shí)也說(shuō)明變壓器油的界面張力與油的劣化程度密切相關(guān)。
通過(guò)考察不同方法測(cè)量時(shí)間對(duì)測(cè)量結(jié)果的影響,推薦采用IEC62961:2018方法對(duì)變壓器油進(jìn)行界面張力的檢測(cè),該方法既能減小因測(cè)試時(shí)間不同而引起的誤差,又能快速進(jìn)行檢測(cè)。





